Homework 10

P9.1.2 The terminal of one coil in Figure P9.1.2 is marked with a dot. (a) Mark one terminal of the other coils with a dot; (b) connect the coils in series for maximum total inductance; (c) determine the inductances of coils 2 and 3 , assuming $L_{1}=40$ $\mathrm{mH} ; M_{12}=M_{23}=20 \mathrm{mH}$, and $k_{12}=k_{23}=1 / \sqrt{2}$;
(d) determine M_{13}, assuming $k_{13}=0.5$.

Solution: (a) The dots on the windings should be such that current entering at the dotted terminals produces

Figure P9.1.2 flux in the same direction in the core.
(b) To produce maximum inductance, the coils have to be connected so that fluxes are additive.
(c) $M_{12}=k_{12} \sqrt{L_{1} L_{2}}$, or, $20=\sqrt{40 L_{2}} / \sqrt{2}$, which gives $L_{2}=800 / 40=20 \mathrm{mH}$; $20=\sqrt{20 L_{3}} / \sqrt{2}$, which gives $L_{3}=$ $800 / 20=40 \mathrm{mH}$; $M_{13}=0.5 \sqrt{40 \times 40}=20 \mathrm{mH}$.

Figure P9.1.2

P9.1.20 Determine $v_{1}(t)$ and $v_{2}(t)$ in Figure P9.1.20, assuming $i_{1}(t)=(64 t+50)$ A and $i_{2}(t)=15 t \mathrm{~A}$.

Solution: $v_{1}=L_{1} d i_{1} / d t+M d i_{2} / d t=5 \times 64+15=$

Figure P9.1.20
$335 \mathrm{~V} ; v_{2}=L_{2} d i_{2} / d t+M d i_{1} / d t=3 \times 15+64=$ 109 V.

P9.2.3 Determine $Z_{\text {in }}$ in Figure P9.2.3.
Solution: The impedance encountered by the current I is: $j \omega L_{1}+j \omega L_{2}-j 2 \omega M-$ $j / \omega C=j 20+j 20-j 20-j 20=0$.
Hence, $Z_{i n}=0$.

P9.2.7 By substituting the T -equivalent circuit of either
Figure 9.4.1b or Figure 9.4.1d for the linear transformer in Figure P9.2.7, show that the input impedance $\mathbf{V}_{1} / \mathbf{I}_{1}$ can be
expressed as: $Z_{i n}=\frac{V_{1}}{I_{1}}=j \omega L_{1}+\frac{\omega^{2} M^{2}}{j \omega L_{2}+Z_{L}}$.

Figure P9.2.7

Note that because M is squared in this expression, $Z_{i n}$ is independent of the dot markings.
Solution: Assuming the dot markings of Figure 9.4.1a,
$Z_{i n}=j \omega\left(L_{1}-M\right)+\frac{j \omega M\left(j \omega\left(L_{2}-M\right)+Z_{L}\right)}{j \omega L_{2}+Z_{L}}=$
$j \omega L_{1}+\frac{\omega^{2} M L_{2}-j \omega M Z_{L}-\omega^{2} M L_{2}+\omega^{2} M^{2}+j \omega M Z_{L}}{j \omega L_{2}+Z_{L}}$

Figure P9.2.7-1
$=j \omega L_{1}+\frac{\omega^{2} M^{2}}{j \omega L_{2}+Z_{L}}$ Since M is squared, this result is
independent of the dot markings.

P9.2.11 Using the result of Problem P9.2.7, determine k in Figure P9.2.10 so that: (a) the input impedance $Z_{\text {in }}$ is purely resistive; (b) \mathbf{l}_{1} is maximum.

Figure P9.2.11
Solution: Input impedance $=10+j 10+$ $\frac{10 \times 40 k^{2}}{j 40+20-j 20}=10+j 10+$ $\frac{400 k^{2}}{20+j 20}=10+j 10+\frac{20 k^{2}(1-j)}{2}=$
$10\left(1+k^{2}\right)+j 10\left(1-k^{2}\right)$

$10\left(1+k^{2}\right)+j 10\left(1-k^{2}\right)$.
Figure P9.2.11
(a) The impedance is purely resistive when $k=1$.
(b) $\left|Z_{\text {in }}\right|^{2}=100\left[\left(1+k^{2}\right)^{2}+\left(1-k^{2}\right)^{2}\right]$; current is maximum when bracketed quantity is minimum. Bracketed quantity is: $2+2 k^{4}$ and is a minimum when $k=0$.

P9.2.18 Determine the stored energy in the circuit of Figure P9.2.18 in the dc steady state, assuming $M=1 \mathrm{H}$.

Solution: No current flows in the dc state through the 4 H inductor because of the series capacitor. $L_{e q}$ of the 2 H and 3 H inductors is $2+3+2 \times 1=7 \mathrm{H}$. This inductor acts as a

Figure P9.2.18 short circuit, so that the current through it is $1 / 0.5=2 \mathrm{~A}$, and the voltage the capacitor is zero. The energy stored in the circuit is $0.5 \times 7 \times 4=14 \mathrm{~J}$.

P9.2.27 P9.2.27 Derive TEC between terminals 'ab' in Figure P9.2.27.
Solution: With terminals ab open circuited, the equivalent inductance in mesh 1 is $j 50+j 40+2 \times j 30=j 150 \Omega$. Hence, $\mathbf{I}_{\mathbf{1}}=\frac{200}{50+j 150-j 100}=$
$\frac{4}{1+j}=2(1-j) A . V_{T h}=$

Figure P9.2.27
$(j 40-j 100+j 40+j 30+j 20) \mathbf{I}_{\mathbf{1}}=$ $j 60(1-j)=60(1+j) V$.

With terminals ab short circuited, $200=(50+j 50+j 40-j 100) \mathbf{I}_{\mathbf{1}}-$ $(j 40-j 100) \mathbf{I}_{2}+j 30 \mathbf{I}_{1}+$ $j 30\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right)-j 40 \mathrm{I}_{2}-j 20 \mathrm{I}_{2}$, or $(50+j 50) \mathbf{I}_{1}-\beta 0 \mathbf{I}_{2}=200$. For mesh 2: $(j 80+j 40-j 100) \mathbf{I}_{2}-(j 40-$ $j 100) \mathbf{I}_{1}+j 20 \mathbf{I}_{2}+j 20\left(\mathbf{I}_{2}-\mathbf{I}_{1}\right)-j 30 \mathbf{I}_{1}-j 40 \mathbf{I}_{1}=$
 0 , or $-j 30 \mathbf{I}_{1}+j 60 \mathbf{I}_{2}=0$, or $\mathbf{I}_{\mathbf{1}}=2 \mathbf{I}_{\mathbf{2}}$. Substituting, $\mathbf{I}_{\mathbf{s c}}=\mathbf{I}_{\mathbf{2}}=\frac{20}{10+j 7} \mathrm{~A}$. $Z_{T h}=\frac{60(1+j)(10+j 7)}{20}=$ $3(3+j 17) \Omega$.

Figure P9.2.27-2

P9.2.38 For the circuit of Figure P9.2.38, (a) Derive the mesh-current equations; (b) determine $V_{a b}$.
P9.2.38 The mesh-current equations are: Mesh 1: $j 20 \mathbf{I}_{1}+j 10 \mathbf{I}_{2}-j 10 \mathbf{I}_{4}=V_{\mathbf{Y}}$, where \mathbf{V}_{Y} is a voltage rise across the dependent source in the direction of \mathbf{I}_{1}

Mesh 2: $j 10 \mathbf{I}_{1}+(j 10-j 10) \mathbf{I}_{\mathbf{2}}+-\left(-j 10 \mathbf{I}_{3}\right)$

$$
=-V_{Y}
$$

Adding these two equations,

$$
j 30 \mathbf{I}_{1}+j 10 \mathbf{I}_{2}+j 10 \mathbf{I}_{3}-j 10 \mathbf{I}_{4}=0
$$

Substituting $\mathbf{I}_{4}=-j$ and $\mathbf{I}_{3}=1$ and dividing by $j 10$ gives: $3 \mathbf{I}_{1}+\mathbf{I}_{\mathbf{2}}=-1-j$. Moreover,
$\mathbf{V}_{\mathbf{X}}=\mathbf{I}_{\mathbf{2}}-\mathbf{I}_{\mathbf{1}}$, where $\mathbf{V}_{\mathbf{x}}=3(1+\jmath)$.
Substituting for $\mathbf{I}_{2}:-4 \mathbf{I}_{\mathbf{1}}=(1+\jmath)+$ $3(1+j)=4(1+j)$, or $-I_{1}=(1+j)$. $\mathbf{V}_{\mathrm{ab}}=j 10\left(\mathbf{I}_{4}-\mathbf{I}_{\mathbf{1}}\right)=j 10(-j+1+j)=$ $j 10 \mathrm{~V}$.

